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Abstract  

All space-times admitting a neutrino radiation field are obtained. Three classes of such 
space-times exist, characterised by the Weyl tensor being of type D, N (or O) or III. 

1. Introduction 

The concept of a neutrino radiation field is introduced (Griffiths & 
Newing, 1970) as being any neutrino field with energy momentum tensor 

E m = A 2 l ~ l ~  

where l~, is the neutrino flux vector. This definition is made by analogy to 
electromagnetic radiation fields. It has been shown (Audretsch, 1971) that 
all neutrino fields (with casual behaviour) become, asymptotically, neutrino 
radiation fields, a result which justifies physically the original definition. 

Griffiths and Newing show that the Weyl equation for a neutrino field 
can be written in terms of a null tetrad as 

( l~m ~ - l~ mt,);,, = m= l=;v (1.1) 

where the null vector l v is the flux vector, satisfying 

l~;~ = 0 (1.2) 

The conditions for a neutrino radiation field are 

rn ~ l~;~, = alt, + brn~ (1.3) 

and 
r~ ~ m~;~, = --~iA 2 I~, + fiml, - ar~# (1.4) 

where b is real. The purpose of the present paper is to solve the Einstein 
field equations 

R ~  = -A2 l~ Iv (!. 5) 
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with the supplementary conditions (1.1) to (1.4). The method of spin 
coefficients, (Newman & Penrose, 1962) will be used throughout and 
readers unfamiliar with the definitions and notation are referred to the 
paper by Newman and Penrose. A coordinate system, adapted to the 
problem, is set up in Section 2 and the general solution to the resulting field 
equations is then obtained in the following sections. Three distinct classes 
of solution are obtained and these are characterised by the Petrov type of 
the Weyl tensor. 

2. Derivat ion o f  the F ieM Equat ions 

It follows from equation (1.3) that the neutrino flux vector is proportional 
to a gradient, lv = Au,~,. It is convenient to introduce a new tetrad by the 
transformation 

l~ --> A -I l~ and n~ --> A n  v (2.1) 

so that the new vector Iv (which is now no longer the neutrino flux vector) 
is equal to a gradient. This then leads to the following conditions on the spin 
coefficients 

-r= a+/3 ,  p=tS, K=0 ,  , + ~ = 0  (2.2) 

so that I, is tangent to a family of affinely parametrised null geodesics. 
Equations (1.1)-(1.4), after application of the transformation (2.1), yield 

~" --- 02 --/3, e = ~ (2.3) 

together with the equations 

2"r - 2[3 = A,~ mV/A (2.4) 

2p - 2e = A.,, m~/A (2.5) 

and 
�89 i A 2 A  = Y - 9 (2.6) 

Coordinates (x 1, x 2, x 3, x 4) = (u, r, x 3, x 4) are now introduced, r being a 
preferred parameter for the null geodesics to which l,  is tangent. It follows 
that 

I u = 32 u and l~ = ~bl l 

In order to preserve the orthonormality conditions on the null tetrad it is 
necessary to take 

n ~ = 31t* + U$2 tL + X ~ 3i~, 

and 
m ~ = oJ32" + ~l 3i~ 

where indices i , j  take the values 3 and 4. The metric can then be constructed 
using the completeness relations 

gt,,, = l~,n,, + l,,n~, - m~,~v - mvrht~ (2.7) 
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The metric  and  neutr ino radiat ion equat ions (2.2)-(2.6) are invariant  in 
fo rm under  the coordinate  and te trad t ransformat ions  

r '  = r + R(u,  X 3, X 4) (2.8) 

X ~' = Xt'(U, X 3, X 4) (2.9) 

r '  = r/~,, u' = y(u), I ~' = ~I v, n ~' = 9 - I  n u (2.10) 

and 

P" = l v, # "  = n" + Brh u + B m  ~' + BBI  u, m u' = m u + 17l u 

The intrinsic derivatives associated with the above null tetrad are 

h=a/ar 

A = UO/Or + OlOu + X ~ O/Ox ~ 

and 

(2.11) 

and 
Dp = p2 (2.21) 

D r  = (r  + ~ ) p  (2.22) 

D-~ = p~ + pzr (2.23) 

D y  = ( r  + r~) e + r ~  + r (2.24) 

D)~ - grr = pa + ~r 2 + ~ r  (2.25) 

D/* - 87r = p/~ + ~'77 - 7rr + r (2.26) 

8 = to O/Or + ~t OlOx t 

Substituting the coordinates into the commution relations satisfied by these 
intrinsic derivatives yields, after simplification using (2.2) and (2.3), 

D~'  = p~'  (2.12) 

Deo = peo - ~" + ~ (2.13) 

D X '  = ( r  + r~) ~' + (e + ~-)~' (2.14) 

D r =  - ( y  + 9) + ( r  + z~)03 + (~ + 7r)oJ (2.15) 

8 U -  A~o = - f i  + ~03 + (ff - y + 9) to (2.16) 

8 X '  - A~:' = (/, -- y + 9 )~ '  + ~ '  (2.17) 

8~' - ~ '  = --e~'  + r$ '  (2.18) 

3o3 - ~o~ = -~co + r03 + (ff - / 2 )  (2.19) 

Substituting (1.5), (2.2) and (2.3) into the N e w m a n  Penrose field equations 
gives 

r = r = 0 (2.20) 
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D v - A T r = ( r r  +e) t~  +('# + r ) ) t + ( y - 9 ) r r  +~b 3 (2.27) 

AA - ~v = - ( / ,  +/2)  A - (3y -- 9)/~ + (2~ + rr) v - ~b 4 (2.28) 

3p = pr (2.29) 

3e = / , p  + r e  - ~b2 (2.30) 

3), - 8/* = (/* - / 2 ) r r  + / , e  + )tr - ~b 3 (2.31) 

8v - A/, = / , 2  + AX + (y + Y)/* - ~ r  + q~2z (2.32) 

3y = / , r  + ~ (2.33) 

&r = ~p (2.34) 

Ap - 8r = -p/2 - 2"r~ + (y + 9)0  - ~b2 (2.35) 

A e  - 8y = pv - ra - ~(/2 - 9 + Y) - ~b3 (2.36) 

Substituting (1.5), (2.2), (2.3) and (2.20) into the Bianchi identities yields 

D~b2 = 3p~2 (2.37)  

3~2 = 3r~b2 (2 .38)  

8~b2 - D~b 3 = -3rr~2 - 2p~b3 (2.39) 

A ~2 - -  ~ 3  = -3/z~b2 - 2 r ~ 3  - P~22 (2.40)  

8~b 3 - D~b4 = 3)~b2 - 2(~ + 2rr) ~b 3 - p~b4 (2.41) 

Ar - -  ~t~4 "~ ~r = 3v~b2 - 2(Y + 2/*)~b 3 - -  "/'r - "r~22 (2.42)  

Dr = 20r (2.43) 

In  the above 
~22 = ---~R~v n u n ~ = +-}A 2 (2.44) 

Under  the null ro ta t ion (2.11), r t ransforms as 

r ' = ~ ' + B p  

I t  follows tha t  the solutions of  the equat ions (2.12)-(2.43) can be classified 
according as p is zero or non-zero.  In  the latter case the null ro ta t ion can be 
used to make  -r zero. This case is considered in the next section. 

3. Neutrino Radiation Fields with Diverging Rays (i.e. p ~ O) 

The null ro ta t ion  (2.11) is used to make  r = 0. I t  follows f rom (2.21) and 
(2.34) that  ~r = ~t = 0. Integrat ing (2.21) gives 

p = - 1 / r  (3.1) 
where a funct ion of  integrat ion has been reduced to zero using the trans- 
fo rmat ion  (2.8). Equat ions  (2.29), (2.19), (2.30), (2.38) and (2.31) yield 

oJ = 0,  / ,  = / 2 ,  ~b 2 = / z O ,  8/z = 0, ~b 3 = 0 (3 .2 )  



NEUTRINO RADIATION FIELDS IN GENERAL RELATIVITY 2 9 7  

Equations (2.12)-(2.15), (2.24)-(2.27), (2.39) and (2.40) can be solved to 
obtain the r-dependence of the unknowns. In what follows the superscript o 
is used to denote a function of u x  3, x 4 alone. Thus 

~l = ~Ot/r (3.3) 

X ~ = X ~ (3.4) 

= ~~  ( 3 . 5 )  

= yo +/zO/2r 2 (3.6) 

U = U ~ - (yo + ~,o) r + i~~ (3.7) 

v = v ~ ( 3 . 8 )  

~4 = ~40/r (3 .9)  

r = r176 (3.10) 

The transformation (2.9) is used to set ~o3 = p, ~o4 = iP. It then follows that 

~o, Olax' =- 2 P  a1~5 

where 
z =  x3 + i x  4 

The choice of  the above canonical form for P does not exhaust the trans- 
formation (2.9), there still remains 

z '  = z ' (z ,  u) (3.11) 

Equating to zero the different powers of  r in equation (2.17) yields 

U ~ = 0 (3.12) 

and 
2PXOk~ _ (yo + ~o) ~o~ _ ~o~,1 _ XOJ ~otj = (_yo + ~o)~o~ (3.13) 

It follows from (3.13) that X ~ = X ~ + i X  ~ is independent of 5 and so can 
be reduced to zero by means of the transformation (3.11). Since X ~ X ~ 
are real they must both vanish. Again the transformation (3.11) is not 
exhausted, there remains 

z' = z'(z) (3.14) 

Equation (3.13) now becomes 

2~ ~ = - ( logP) , l  (3.15) 

The remaining equations amongst (2.12)-(2.43) are treated in the same 
way as equation (2.17) and the following information is obtained, 

p0 = i//40 = 0 (3.16) 

y 0  = yo.~ = p~ = 0 (3.17) 
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F ~ 1 = --3(Y ~ + 9 ~ / z~ - $~ (3.18)  

F~ = 0  (3.19) 

Equations (3.15) and (3.17) imply that 

P = 2(~,) U(u) 

The transformation (3.14) can be used to make Z(~)= 1 and the trans- 
formation (2.10) can be used to make U(u) = exp [ix(u)]. Hence 

P = exp [iX(u)] (3.20) 

Substituting this into (3.15) and (3.18) yields 

90 = ---}i 2 (3.21) 

~bo2 __ _/20 (3.22) 

The equation (3.19) gives that the real function/~o is a function of u alone. 
The metric of the resulting space-times is obtained from (2.7) and is Oo) 

21~~ 0 
g ~  = 0 - 2  

0 0 

Equations (2.4) and (2.5) yield 
a = a~ 2 

so that the neutrino flux vector is 

(3.23) 

A~ r-231 (3.24) 

Finally, comparing (3.22), (2.44) and (1.5) gives 

Ru~ = +2/20 r-23tl 31 (3.25) 

The only remaining equation, namely (2.6), yields 2 =/2A0. Notice that the 
neutrino flux vector is only defined up to an arbitrary multiplicative function 
of u and for a positive energy density/~0 is a decreasing function of u. Since 
~b2 is the only non-zero tetrad component of the Weyl tensor it follows that 
the Weyl tensor is of type D. The corresponding empty space-time 
(t~ ~ = constant) is not flat. 

4. Neutrino Radiation Fields with Non-diverging Rays (i.e. p = O) 

The null rotation (2.11) can be used to make ~r= 0; this fixes B up to 
B = B ( u ,  x3,x4). The r dependence of the various unknowns is easily 
obtained from the relevant equations, thus 

T = T O 

~___~o 
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~, = ~ 2  ~ 

~, = t o ,  

7' = (to .~o + ~b2 o) r + 7'0 

/~ = ~b2 ~ r + / z  ~ 
co = - T  o r + co o 

x ~ = (~.o ~o~ + ~o ~o~) r + X ~ 

U =  U ~ + ( ' r~ ~ + "~~ o~~ - 7'0 _ 9O)r _ �89 + ~b2o + ~2O)r 2 

Equat ions (2.30), (2.34) and (2.35) become 

~eo = .r o ~o _ ~b2 o (4.1) 

~ . o  = 0 (4.2)  

_~.r o = _2~.o .~o _ ~bzo (4.3) 

The  coefficient of  r in (2.33) is 

~(~o ~o + ~ o )  = ~2o ~o 

and this, together  with (2.38) and (4.2) yields 

.r 0 ~,~o = _2~b2 o .to (4.4) 

Compar ing  (4.1), (4.3) and (4.4) yields 

~o = ~2o = 0 (4 .5)  

As in the previous section s and s can be put  equal P and iP. The null 
ro ta t ion (2.11) can be used to make )t o = 0; this now fixes B up to B = B(u, z). 
X ~ can then be t ransformed to zero, the remaining t ransformation (2.9) 
then being 

z' = z'(z) (4.6) 

The following informat ion is then readily obtained f rom equations (2.12)- 
(2.43). 

~b 3 = 2/3/z~ (4.7) 

~b4 = 2/3~b~ z r + 2Pv~ + &o ~b3o (4.8) 

~o 2 = _ / ~ o  _/~o(/zo + yo + 90) + coO ~b3O + 2pvo,e (4.9) 

~o = coo,~ + ~oo(/~o + 290) _ 2PUO,~ (4.10) 

7'o,~ = 0, P,z = 0, 7 ' 0  = / ~ o  (4 .11)  

/Zo - 7 '0 + 9 ~ = - ( l o g P ) , l  (4.12) 

2 p ~ o  _ 2/~too,, =/~o _/20 (4.13) 
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Equations (2.4), (2.5) and (2.6) yield 

A = A~  (4.14) 

�89 2 A o = yo _ 9o = _ i A  o 402 (4.15) 

The interpretation of the equations (4.7)-(4.15) depends critically on 
whether r = 0 or ~b 3 # 0. Consider first the case r = 0. Then equation (4.7) 
gives 

~ = u )  

and this function can be reduced to zero using the null rotation (2.11); this 
fixes B up to B = B(u) .  yo is now a function of u alone. From (4.12) 
(logP/~),1 = zero so that P P  is a function of z, ~ alone. It follows, from this 
fact and (4.12), that 

P = Z(~) exp [ix(u)] 

As in the last section Z(~) can be put equal to unity so that 

P = exp [ix(u)] (4.16) 

The transformation (2.10) can be used to make yo = _90 and then equation 
(4.12) becomes 

yo = �89 2 (4.17) 

So far the transformation (2.8) has not been used. Under this transformation 

r ~ = oJ ~ + 2 P R  ~ (4.18) 

The function R can be chosen to make o~ ~ zero if and only if the integra- 
bility condition 

e ,z ~ ,~, 

is satisfied. This is just equation (4.13) and so co ~ can be put  equal to zero. 
The only remaining equation is obtained by eliminating 402 between (4.9) 
and (4.15). This gives an equation for U ~ namely 

u ~  = re(u) = ~ 2 

The general solution is 
U ~ = m(u)  z~  + F 

where Fis a n y  function of  u, z, ~ satisfying Laplace's equation F, ze = 0. The 
resulting metric is 

m z ~  + F 0 (4.19) 
g ~  = 0 - 2  

0 0 - 

The neutrino flux vector is A ~ 31~ and 
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This metric is the plane fronted wave found previously (Audretsch & Graf, 
1970). The neutrino flux vector is only defined up to an arbitrary multipli- 
cative function of u. The Weyl tensor is of type N or O. The condition for 
conformal flatness (type O) is F.zz = 0. 

Now consider the case ~b 3 # 0. From (4.11)/,o=~ = 0 and so, using the null 
rotation (2.11),/,o can be put in the form 

/~o =/~O(z ' u) (4.20) 

Equation (4.11) then gives 
y ~ =/z~ u) + y~ (4.21) 

It is now necessary to define a 'potential' Q(g, u) by the equation 

_1 = 0_~0 (4.22) 
P d g  

It then follows that (4.13) can be written in the form 

(~_~~ /*o- ~o~ 

, 

and this equation is the integrability condition for the function R in equation 
(4.18) to be chosen so that 

coo = �89 Q (4.23) 

Equation (4.12) can now be used to obtain/2~ in terms of 0(g,u) and 
y~ 

rio(g, u) = 7 ~ - 90 + (log 0,~),1 (4.24) 

The only remaining equation is obtained by eliminating ~~ 2 between (4.9) 
and (4.15). This equation is 

4Pf fUOze  = i, o fl, o + ffQT, O l, O,z + pOixo ~zo e _ iAO(t,o _ f,o + 7o _ 90) 

This defines U ~ in terms of Q(~,u), 7~ and A~ up to an arbitrary 
solution of Laplace's equation U~ = 0. It follows that the metric of the 
space-times under discussion here are generated by Q, y0 and A ~ The 
neutrino flux vector is A ~ 8~ x and since A ~ appears explicitly in the metric 
the arbitrariness in the flux vector which occurred in the previous two cases 
no longer occurs here. This result is in agreement with a theorem due to 
Griffiths & Newing (1971). The Weyl tensor for this third class of space- 
times is of type III. 
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